Tuesday, June 19, 2012

Merck Double-Knockdown Strategy to Ameliorate Toxicity from Mtp and ApoB Inhibition

The signs are that the next RNAi Therapeutics metabolic/cardiovascular disease candidate will be a dual-targeting one.  While the initial attempts in this area were directed at specifically reducing the well-known cardiovascular risk factor LDL-cholesterol (preferred targets: ApoB and PCSK9), it has become quite tempting to exploit the rare opportunity offered by RNAi Therapeutics to target multiple gene targets with just one formulation to both broaden the therapeutic benefits in patients that typically suffer from a plethora of metabolic dysfunctions (obesity, insulin resistance, and hypercholesterolemia to name a few) and to balance the adverse effects that may result from inhibiting certain targets.

Most notable among the latter is the liver fat accumulation following ApoB knockdown.  Clinical studies with ISIS Pharmaceuticals’ antisense compound mipomersen/KYNAMRO have clearly evidenced such liver fat accumulations which were often accompanied by increases in liver enzymes, general indicators of liver toxicity.  These results further are corroborated by similar clinical observations with the small molecule lomitapide by Aegerion targeting microsomal triglyceride transfer protein (Mtp) which acts essentially at the same stage as ApoB in packaging triglycerides and cholesterol for transport out of liver cells into the circulation.  Aegerion obtained this drug candidate from BMS via UPenn as BMS did not want to further develop this compound due to these safety risks.

Both mipomersen and lomipatide have completed phase III studies and new drug applications for approval in the rare genetic disease homozygous familial hypercholesterolemia (hoFH), and in the case of mipo also for severe heterozygous FH have been submitted to the FDA and EMA.   In terms of therapeutic profile, mipomersen seems to have the edge as, being a phosphorothioate antisense compound, it preferentially accumulates in the liver.  Consequently, it does not cause the side effects resulting from the intestinal inhibition of this pathway that  have been observed with small molecule lomatipe (note: SNALP-delivered RNAi Therapeutics should have similar benefits over small molecules).  Moreover, mipomersen not only lowers LDLc, but also moderately reduces the independent cardiovascular risk factor Lp(a).   Although not a prospective primary goal of mipomersen clinical development, incidental positive findings like this one can go a long way in having regulators take a benevolent look at drug candidates.  This can be seen in the related obesity space where one of the attractive benefits of Arena Pharmaceutical's lorcaserin is that it lowers blood glucose levels.

Obviously, there should be plenty of potential gene targets involved in triglyceride synthesis and utilization/oxidation that could be exploited to concomitantly lower triglyceride content in ApoB/Mtp-inhibited livers while maintaining LDLc-lowering.



Merck Tests ApoB and Mtp Knockdown, Finds Mtp-DGAT Co-Knockdown Promising

Tep and colleagues from Merck published a paper on a study that tested whether an RNAi co-knockdown strategy could be implemented to alleviate the liver fat accumulations due to Mtp and ApoB inhibition.  To be clear, Merck did not state that they have firm intentions of developing such a co-knockdown strategy, but nevertheless noted that such a strategy would have the advantage of  not having to ‘add[ ] a novel compound on top of an approved drug’ and that dual-targeting RNAi Therapeutics candidates are already in clinical development, therefore paving the regulatory path (see ALN-VSP02, and TKM-EBOLA).

In a first step the scientists confirmed the liver fat accumulation following Mtp and ApoB siRNA knockdown.  Not only were they of similar magnitude, the effects of the two knockdowns where essentially the same in almost every other investigated regard.  Notably, there was no reduction in liver fat accumulation following prolonged siRNA treatment as one might have expected based on claims by ISIS Pharmaceuticals of liver fat normalizations with time, but widespread changes in the expression of lipid-related genes were nevertheless observed- this time consistent with claims by ISIS Pharmaceuticals.

Among the genes that were downregulated following Mtp siRNA treatment, presumably as a result of negative feedback, was DGAT2, a key enzyme in triglyceride synthesis that is also thought to represent an important regulatory node in lipid metabolism (e.g. by promoting fatty acid oxidation).  Reasoning that further reducing DGAT2 with liposomally formulated siRNAs may lead to a measurable reduction in liver fat, they then co-formulated the Mtp siRNA with a DGAT2 siRNA and injected them into mice.  Indeed, this resulted in not only the expected LDL-cholesterol reduction, but liver triglyceride increases were mitigated.  According to data not shown, it was claimed that the same beneficial effect could not be observed with an ApoB-DGAT2 siRNA combination, suggesting that Mtp may be the better target for co-knockdown strategies.

It should be added, however, that the day 14 time-point data these conclusions were based on were somewhat of an outlier as at this time the co-formulation with DGAT2 siRNA reduced the LDLc-lowering potency of Mtp knockdown.  On the other hand, the scientists report (also in data not shown) that they tested the co-inhibition strategy using DNA-directed RNAi and thus validated this conclusion.    Moreover, given the multitude of genes involved in lipid metabolism, the Merck scientists stated that the Mtp-DGAT2 co-knockdown is a proof-of-concept and that other targets besides DGAT2 are also being considered (especially Gpat1).

Given Tekmira’s interest in ApoB as a target and recent LNP work by Alnylam and their PCSK9 collaborators from UT Southwestern (Horton, Goldstein) on SCAP knockdown to alleviate hepatic steatosis and Alnylam's general interest in co-knockdown for metabolic applications, Merck will not be alone in their endeavor of finding an RNAi Therapeutic candidate that can do it all, LDLc lowering, triglyceride lowering, and more.  Given that SNALP technology would likely be used in such a clinical program, this could particularly benefit Tekmira.  

4 comments:

Anonymous said...

Merck also reported "AAV8-mediated Over-expression of Cynomolgus LCAT Raises HDL Cholesterol Levels in Cynomolgus
Monkeys" which suggests they may be looking at a ddrnai/gene therapy approach delivered via an AAV vector.

Anonymous said...

Interesting one. All we have heard of ddRNAi of late from the media is delays to the Benitec pipeline,
unlike the zippy but now defunct Nucleonics when they sped into their HBV trial.

What everyone has missed in the smoke of last couple of days however is City of Hope enrolling
patients for next HIV trial using ddRNAi. Outcome of this trial could really crank things up. But listen to John Rossi, not me.

http://www.youtube.com/watch?v=9XqJyYrYgwU

Anonymous said...

Single formulation with multiple targets knockdown strategy definitely is a unique and strong advantage for RNAi technology. RNAi technology certainly has broader reach than antibody based therapeutics. On top of those advantages, many undruggable targets could potentially be targeted with RNAi. We just need clinical proof.............

Anonymous said...

well the proof may not be far away. the small safety trial is seeing in one patient poliferation of HIV resistant T cells. That's 3.5years after infusion of the modified stem cells with the Pol III expression of shRNA trigger. The trial recruiting now increases to efficacy dose of modified stem cells..so if this comes good that'll be a pure play, black and white piece of clinical proof of RNAi. HIV one shot not as commercially attractive to big pharma obviously as say cholesterol, but proof none the less enough to get Merck moving on their prelim ddRNAi work. And Rossi mentioned influenza, HCV, and HBV as other diseases well in firing line of ddRNAi.

By Dirk Haussecker. All rights reserved.

Disclaimer: This blog is not intended for distribution to or use by any person or entity who is a citizen or resident of, or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would subject the author or any of his collaborators and contributors to any registration or licensing requirement within such jurisdiction. This blog expresses only my opinions, they may be flawed and are for entertainment purposes only. Opinions expressed are a direct result of information which may or may not be accurate, and I do not assume any responsibility for material errors or to provide updates should circumstances change. Opinions expressed in this blog may have been disseminated before to others. This blog should not be taken as investment, legal or tax advice. The investments referred to herein may not be suitable for you. Investments particularly in the field of RNAi Therapeutics and biotechnology carry a high risk of total loss. You, the reader must make your own investment decisions in consultation with your professional advisors in light of your specific circumstances. I reserve the right to buy, sell, or short any security including those that may or may not be discussed on my blog.