Wednesday, April 29, 2015
HBsAg Rules at International Liver Congress
Monday, October 29, 2007
Journal Club: A commonly used treatment for HCV, Interferon Beta, may largely act through microRNAs
In this study, Pedersen and colleagues were initially interested in whether interferons had the potential to modulate cellular microRNA levels. Not very surprisingly, this potent class of cytokines up- and downregulated a number of microRNAs. Strikingly, however, eight of the interferon beta-induced microRNAs had microRNA seed complementarities with an HCV genome. Moreover, miR-122, a microRNA that has now been shown by a number of laboratories now to facilitate HCV replication, was downregulated by interferon beta.
The link between HCV and interferon-regulated microRNAs is intriguing, since interferon beta is at the center of current HCV treatment regimens. In order to test whether the antiviral activity of interferon beta on HCV replication was indeed mediated by microRNA regulation, the authors asked whether interferon beta could still inhibit HCV replication in the presence of mimics of the upregulated and HCV matching microRNAs and an inhibitor of miR-122. In agreement with the notion that interferon-regulated microRNAs mediate a large part of interferon beta inhibition of HCV, such a mixture of small RNAs alleviated interferon beta inhibition of HCV replication from 90% to around 50% of untreated control in a tissue culture system.
HCV has a long-standing tradition in the RNAi Therapeutics field. As such, a number of drug candidates are expected to enter the clinic in the near future that directly target the HCV genome by RNAi. In addition, since HCV replication is supported by miR-122, it has become the focus of the first wave of microRNA-targeting therapeutic programs. Due to the ability of viruses to escape drug inhibition through mutation, a combination of these approaches appears promising. As much as no other current HCV antiviral alone can reliably get rid of HCV altogether, I do not expect any RNAi-related stand-alone therapy for HCV to be successful. However, when combined with potent agents such as Vertex Pharmaceutical’s late-stage protease inhibitor VX-950, RNAi may be able to further knock down HCV sufficiently so that it can be entirely cleared by the body. Moreover, many patients do not complete interferon therapy due to its severe side-effect profile, and alternatives are desirable. The strategy proposed in the paper may therefore lead to a treatment that works through the same antiviral pathway as interferon beta, but without the side-effects.
Lastly, I would like to briefly comment on the evolutionary aspects of the studies. It is very unlikely, given the rapid evolution of viruses alone, that the sequence of the implicated microRNAs was shaped due to selection based on HCV inhibition. Accordingly, the authors find that the sites complementary to the microRNA seeds are not all conserved in the different HCV genotypes (note: whether this is related to the varying efficacy of interferon beta on different genotypes in the clinic was not discussed). It is only through comparing the modulated microRNAs with a lot of viruses that they found the link with HCV. It is therefore fortuitous that interferon-modulated microRNAs should have anti-HCV activities. Of note, this is similar to a paper published 2 years ago in the journal Science (Lecellier et al.: A cellular microRNA mediates antiviral defense in human cells. Science 308: 557) which showed for the first time that a cellular microRNA may restrict the replication of a mammalian virus through good fortune.
Thursday, August 9, 2007
Back to Basics: Does RNAi Exist in Humans?
RNAi is most easily explained by starting with long double-stranded RNA (dsRNA) that is then chopped up by Dicer into short interfering RNAs which then get incorporated into the RiSC complex. The siRNAs loaded in RiSC consequently seek out and destroy their targets by a slicing mechanism. However, long double-stranded RNAs are not suitable for specific gene suppression in humans due to an innate immune system called the interferon response. The interferon response recognises dsRNA greater than 30bp in length and consequently shuts down almost all protein translation in a cell. This is a mechanism by which the cell protects itself from viruses which often produce dsRNA intermediates as part of their life-cycle.
I therefore vividly remember myself in an elective class (“RNA World”) as an undergrad student at Edinburgh University, when my lecturer, Dr. David Tollervey, predicted that it would only be a matter of time that RNAi would be discovered in humans- 1 year before Tuschl and colleagues published their seminal paper on siRNAs. In retrospect, it is clear that his confidence must have come from the fact that the human genome was littered with RNAi-related genes, such as some coding for Dicer and Argonaute proteins. He also may have been familiar with recent publications on the discovery of RNAi-related small RNAs in plants (Hamilton and Baulcombe) and the finding that double-stranded RNAs were processed into similarly sized small RNAs in an Drosophila in vitro system (Zamore, Tuschl, Sharp, Bartel).
Of course, we all know now that it was Tuschl who had the genius to conclude that siRNAs would be the natural effectors of RNAi in humans without inducing the interferon response. Except that they were not. Of course, synthetic siRNAs would work, but years of searching for bona fide naturally occurring siRNAs in humans derived from long dsRNA failed to convincingly prove their existence. It turns out that the RNAi enzymes are all present in vertebrates for another, albeit related reason, namely microRNA-mediated gene regulation. MicroRNAs are a major class of small RNAs that are not derived from long dsRNA, but hairpin precursors and that have turned out to be ubiquitous mediators of post-transcriptional gene regulation and that require RNAi-related proteins for their biogenesis and function. It is in this pathway that experimentally introduced siRNAs perform their gene silencing function.
It therefore appears that in humans the interferon system may have rendered antiviral roles for RNAi unnecessary. This is unlike in many invertebrates which lack an interferon system and where the ancient antiviral function is still alive and kicking. A fascinating story of evolving overlapping biological pathways with a happy ending for keeping the therapeutic promise of RNAi alive, but when you ask a scientist about RNAi in humans- beware!
Market Watch: Nastech reported “positive non-clinical study results for [their] siRNA program for treatment of influenza [in tissue culture in vitro studies].” Following an announcement this Monday of a webinar on flu RNAi to be hosted by Nastech this Friday, frantic trading led to big gains in Nastech stock in anticipation of major RNAi news. Nastech and Alnylam vie for a potentially lucrative government contract for flu preparedness and progress in this area will be closely watched as flu RNAi may turn out to be the first commercial RNAi Therapeutics product. It is likely that NSTK will give up some of its gain in the wake of today’s news, while ISIS may gather momentum as their RNA modification IP estate is starting to yield a rich harvest. Alnylam is to follow with their report tomorrow.
Disclaimer: This blog is not intended for distribution to or use by any person or entity who is a citizen or resident of, or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would subject the author or any of his collaborators and contributors to any registration or licensing requirement within such jurisdiction. This blog expresses only my opinions, they may be flawed and are for entertainment purposes only. Opinions expressed are a direct result of information which may or may not be accurate, and I do not assume any responsibility for material errors or to provide updates should circumstances change. Opinions expressed in this blog may have been disseminated before to others. This blog should not be taken as investment, legal or tax advice. The investments referred to herein may not be suitable for you. Investments particularly in the field of RNAi Therapeutics and biotechnology carry a high risk of total loss. You, the reader must make your own investment decisions in consultation with your professional advisors in light of your specific circumstances. I reserve the right to buy, sell, or short any security including those that may or may not be discussed on my blog.